Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Conformal radiotherapy requires accurate dose calculation at the dose specification point, at other points in the planning target volume (PTV) and in organs at risk. To assess the limitations of treatment planning of lung tumours, errors in dose values, calculated by some simple tissue inhomogeneity correction algorithms available in a number of currently applied treatment planning systems, have been quantified. MATERIALS AND METHODS Single multileaf collimator-shaped photon beams of 6, 8, 15 and 18 MV nominal energy were used to irradiate a 50 mm diameter spherical solid tumour, simulated by polystyrene, which was located centrally inside lung tissue, simulated by cork. The planned dose distribution was made conformal to the PTV, which was a 15 mm three-dimensional expansion of the tumour. Values of both the absolute dose at the International Commission on Radiation Units and Measurement (ICRU) reference point and relative dose distributions inside the PTV and in the lung were calculated using three inhomogeneity correction algorithms. The algorithms investigated in this study are the pencil beam algorithm with one-dimensional corrections, the modified Batho algorithm and the equivalent path length algorithm. The calculated data were compared with measurements for a simple beam set-up using radiographic film and ionization chambers. RESULTS For this specific configuration, deviations of up to 3.5% between calculated and measured values of the dose at the ICRU reference point were found. Discrepancies between measured and calculated beam fringe values (distance between the 50 and 90% isodose lines) of up to 14 mm have been observed. The differences in beam fringe and penumbra width (20-80%) increase with increasing beam energy. Our results demonstrate that an underdosage of the PTV up to 20% may occur if calculated dose values are used for treatment planning. The three algorithms predict a considerably higher dose in the lung, both along the central beam axis and in the lateral direction, compared with the actual delivered dose values. CONCLUSIONS The dose at the ICRU reference point of such a tumour in lung geometry is calculated with acceptable accuracy. Differences between calculated and measured dose distributions are primarily due to changes in electron transport in the lung, which are not adequately taken into account by the simple tissue inhomogeneity correction algorithms investigated in this study. Particularly for high photon beam energies, clinically unacceptable errors will be introduced in the choice of field sizes employed for conformal treatments, leading to underdosage of the PTV. In addition, the dose to the lung will be wrongly predicted which may influence the choice of the prescribed dose level in dose-escalation studies.
منابع مشابه
Dosimetric Study of Tissue Heterogeneity Correction for Breast Conformal Radiotherapy
Introduction: Heterogeneity correction is an important parameter in dose calculation for cancer patients where it may be cause inaccuracy in dose calculation as a result of different densities of patients. This study studied the impact of dose calculation of breast cancer patients with and without heterogeneity correction. Material and Methods: Twenty breast cancer patients were treated with Th...
متن کاملDesign of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements
Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملDosimetric Evaluation of Dose calculation algorithms of Monaco Treatment Planning System in the heterogeneities area
Introduction: In radiation therapy, the accuracy of dose calculations by a treatment planning system (TPS) is important to achieve tumor control and to spare normal tissue. Treatment planning system calculations in the heterogeneous situation may present significant inaccuracies. In this study, three different dose calculation algorithms, pencil beam (PB), collapsed cone (CC), ...
متن کاملApplication of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom
Background: In treating patients with radiation, the degree of accuracy for the delivery of tumor dose is recommended to be within ± 5% by ICRU in report 24. The experimental studies have shown that the presence of low-density inhomogeneity in areas such as the lung can lead to a greater than 30% change in the water dose data. Therefore, inhomogeneity corrections should be used in treatment pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2001